博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
HBase概念学习(八)开发一个类twitter系统之表设计
阅读量:6568 次
发布时间:2019-06-24

本文共 3504 字,大约阅读时间需要 11 分钟。

这边文章先将可能的需求分析一下,设计出HBase表,下一步再開始编写client代码。

TwiBase系统

1、背景

为了加深HBase基本概念的学习,參考HBase实战这本书实际动手做了这个样例。

2、需求

这是一个用户推特系统,用户登陆到系统。须要维护用户的基本信息。然后用户能够发帖和其它用户进行互动。用户之间能够相互关注。用户能够浏览关注用户的推文等等。

这是一个比較简单的推特系统。不考虑用户之间的私信,用户评论推特等功能。

3、概要设计

3.1表设计

首先须要设计三个表:用户表。推特表以及用户之间的关系表。

1)用户表

用户表至少包括唯一的username,用户昵称,用户邮箱以及用户发帖数量。用一个列族存储。

创建用户表的语句是:

create'users', 'info'

当中username用作rowkey。这样可以高速依据用户登陆ID查找到用户全部基本信息。

2)推特表

推特表存储用户的发帖,至少包含username,发帖时间。以及发帖内容。用一个列族存储。

创建推特表的语句是:

create'twits', 'twits'

为了可以高速查找到指定用户的全部推文(登陆个人推特时显示),须要将同一个用户的全部推文都存储在一块,所以考虑将用户ID作为行键的第一部分,另外希望每一个用户的推文依照时间有序,所以将时间戳作为行键的第二部分,可是这里有个问题。username是变长的,怎么知道行键中前面到哪儿是username呢,这个时候可以对username做MD5散列,将变长的username变为定长的散列值。

另外你希望用户显示自己的推文的时候依照时间顺序倒序排列。即读出来的推文时间新的排在前面。那么就须要利用一个小技巧,不存储真正的时间戳。而是存储倒序时间戳=Long.MAXVALUE -时间戳。

所以表设计是这种:

rowKey:MD5(用户A)+倒序时间戳#time:发帖时间,content:内容

3)关系表

如今仅仅实用户和推文功能。这明显不够。我们希望可以阅读其它人的推文,这就希望用户可以关注一些其它的用户。

详细我们须要存储哪些关系呢?

1用户A登陆,须要查看自己关注了谁,以及显示其关注的用户的推文,所以要存储用户A关注了谁?

2用户A登陆,想要查看自己的粉丝,所以须要存储谁关注了用户A

3用户A登陆,訪问用户B的推特,那么须要知道用户A有没有关注用户B

一開始你可能会想这样设计表:

rowKey:用户A#1:用户B2:用户C3:用户D

rowKey:用户B#1:用户H2:用户C

这样能够非常轻松回答问题1和问题3.

可是问题2似乎非常难回答。除非扫描整个表。以及每一行的全部列,否则找不出全部关注某个用户的人。

这个表设计另一个大问题,就是当用户A关注用户B的时候,须要在用户A这一行加一列。可是我不知道如今加到哪一列了,即put数据的时候无法指定qualifier。你可能想到在每一行添加一列计数器来解决问题,即counterx,可是不幸的是。HBase不支持事务操作。一旦多个client同一时候关注两个不同的用户,它们都须要取得计数器,然后插入新的一列,两个client非常可能读到同一个计数器值,这样一个client的写入就会被另一个给覆盖,所以必须去掉计数器,能够用以下方式解决:

这样设计表:

rowKey:用户A#用户B:1,用户C:2。用户D:3

rowKey:用户B#用户H:1,用户C:2

到眼下为止的设计还是没有高效的办法回答问题2.

上面两种设计都是“宽表”的形式。如今能够考虑使用“高表”的形式。

rowKey:用户A+分隔符+用户B#1:用户B昵称

即行键存储用户A关注用户B,我们将用户B的昵称放入qualifier能够节省再去用户表找用户B的昵称的时间。这是一种反规范化(de-nomalize)处理。

这样非常easy就能想到这样一个设计:

rowKey:用户A+分隔符+关注+分隔符+用户B#1:用户B昵称

rowKey:用户A+分隔符+关注+分隔符+用户C#1:用户C昵称

rowKey:用户A+分隔符+被关注+分隔符+用户D#1:用户D昵称

rowKey:用户A+分隔符+被关注+分隔符+用户H#1:用户H昵称

这样非常easy就能够回答上面三个问题,各自是用户A关注了谁?用户A关注了用户B?谁关注了用户A。只是要注意,当查找用户A的粉丝列表时。往往不想把用户A关注了谁这些集合也返回给client。这个时候能够通过为扫描设置起始和停止键来做到。

这里须要再次优化,即使用MD5对username进行处理,得到定长的散列值。这样做有几个优点:

能够抛弃掉分隔符,为扫描操作计算起始和停止键更加easy。

行键长度统一,能够帮助你非常好地预測读写性能。

3  MD5有助于数据更加均匀地分布在region上。

所以关系表设计再次改动为这样:

rowKey:MD5(用户A)+关注+MD5(用户B)#1:用户B的昵称

rowKey:MD5(用户A)+关注+MD5(用户C)#1:用户C的昵称

rowKey:MD5(用户A)+被关注+MD5(用户D)#1:用户D的昵称

rowKey:MD5(用户A)+被关注+MD5(用户H)#1:用户H的昵称

可是这样还不是最优的。之前已经说过了,当查找用户A的粉丝列表时,往往不想把用户A关注了谁这些集合也返回给client,尽管能够通过为扫描设置起始和停止键来做到。可是在region server上面仍然要将这些不关心的数据从硬盘上读出来,才会经过扫描过滤。

所以考虑将被关注和关注两种类型分开,分别建立一个表,这下终于的表设计就这样了:

关注表:

rowKey:MD5(用户A)+MD5(用户B)#1:用户B的昵称

rowKey:MD5(用户A)+MD5(用户C)#1:用户C的昵称

被关注表:

rowKey:MD5(用户A)+MD5(用户D)#1:用户D的昵称

rowKey:MD5(用户A)+MD5(用户H)#1:用户H的昵称

创建关系表的命令是:

create'follows', 'f'

create'followedBy', 'f'

4)推贴流表

进一步优化 ---反规范化处理!

设计HBase表的一个关键概念叫做反规范化。

截止眼下为止,我们已经维护了单个用户的关注用户列表,当用户登陆账户的时候,希望看到他关注的全部人的推特。你的应用会提取关注用户列表,然后到推特表中获取每个被关注用户的推特,然后集合这些推特依照时间排序显示出来。

随着系统用户数量增长,用户关注的用户的数量增长,这个过程会花费非常长的时间。

此外,假设一个用户被很多人关注。那么当他的全部粉丝登陆的时候,他的推特都会被訪问。他的推特都是物理上存放在一起的,所以托管这个受欢迎的人的推特的region将会不断回应请求,这样就制造了一个读热点。

解决问题的办法就是为每个用户维护一个推特流。一旦某一个人写了推特,就将这个内容写入到关注他的人的推特流里面。这就是反规范化。

概念介绍:规范化和反规范化

规范化是关系型数据库里面的概念,每种反复信息都会放进一个自己的表,这样有两个优点:当发生更新和删除的时候,不用操心更新指定的数据的全部副本;通过保存单一副本。而不是多个副本,降低了占用的存储空间。须要查询时,使用SQL语句里面的join子句就能够轻易连接这些数据。

反规范化是一个相反的概念,数据是反复的,存储在多个地方。由于你不须要开销非常大的join操作,这时候查询数据更加easy和高速。

规范化为写操作进行了优化,在读取数据时付出了连接数据的开销。

反规范化为读操作进行了优化。在写入时付出写多个副本的开销。

所以,为了为每一个用户维护一个推特流。我们建立一张新表(不打算为users表添加一个列族。由于users表的行键不是为了这个目的而优化的)。

推特流表创建的命令是:

create'twitsStream', 'info'

推特流表设计是这种:

rowKey:MD5(用户A)+倒序时间戳#1:用户B的昵称,2:推贴内容

rowKey:MD5(用户A)+倒序时间戳#1:用户D的昵称,2:推贴内容

rowKey:MD5(用户A)+倒序时间戳#1:用户H的昵称,2:推贴内容

(未完待续。。。

若有什么疑问和不吝赐教,欢迎交流。联系邮箱: jiq408694711@163.com  季义钦

作为兴趣点,眼下本人正在研究HBase和Hadoop

转载地址:http://glpjo.baihongyu.com/

你可能感兴趣的文章
phalcon遇到的那些坑
查看>>
Java类的连接与初始化 (及2013阿里初始化笔试题解析)
查看>>
unity优化笔记
查看>>
linux
查看>>
JavaScript改变 HTML 内容
查看>>
IPv6过渡技术
查看>>
内核调度进程的机制
查看>>
python-68:BS4获取多个标签的文本
查看>>
OSPF中stub area配置实例
查看>>
c primer plus 5 读书笔记1
查看>>
YY的GCD
查看>>
AGC029 E: Wandering TKHS
查看>>
iphone-common-codes-ccteam源代码 CCRadix.m
查看>>
百度分页样式
查看>>
3-3-完全二叉树结点数
查看>>
变量声明和定义的区别
查看>>
卖了5个月水果之后再看互联网思维
查看>>
boost::asio与ACE的对比
查看>>
国内maven库镜像(阿里云)
查看>>
SNMP AGENT函数介绍
查看>>